Month: November 2016

Man in Elevator Simulation

man_in_elevator_simulation

In this simulation, students can observe the variation of the normal contact force (N) and its effect on acceleration and velocity as an elevator moves upward.

Questions for students to work on can include:

  1. Express the acceleration as a function of Normal Contact Force (N), Weight (W) and mass of the man.
  2. Determine the distance travelled by the elevator.
  3. Predict how the forces, acceleration and velocity will differ if the elevator was moving down instead.

Internal Resistance and Maximum Power Theorem

I’ve created this simulation to demonstrate the effect of an internal resistance due to a cell on the potential difference and current of an external load.

One can also vary the internal resistance and external resistance to observe the maximum power theorem. The theorem states that for a given finite internal resistance, one can obtain the maximum external power only when the resistance of the load is equal to the internal resistance of the source.

internalresistance

Simulation for Potentiometer

Continuing the course on Easy Java Simulation, I did this simple simulation on the Potentiometer, which allows students to first predict, and then verify the position of a jockey to achieve null deflection of a galvanometer.

Click on the image below to try it out and do give me your feedback. I’ll try to improve it with whatever little skill I have.

I decided on a DC circuit simulation as I could not find many on Open Source Physics EJSS platform. With this as a template, I guess I can develop more simulations on the same topic when I have time.

Vertical Throw with Free Fall Simulation

This is a simulation done from scratch after attending a crash course on EJSS. It displays the velocity and acceleration vectors as an object is projected vertically upward with a uniform downward acceleration. The initial upward velocity can be altered using a slider. The graph of velocity is traced as the ball moves.

vertical-throw-simulation

https://physicslens.com/ejss/verticalthrow_Simulation.xhtml