Seng Kwang Tan

07. Gravitation

[spoiler title=”Gravitational Field” open=”yes”]

  • Newton’s Law of Gravitation states that the gravitational force between two point masses is directly proportional to the product of their masses and inversely proportional to the square of their separation,
    i.e. $$F_G=\dfrac{Gm_1m_2}{r^2}$$ where G is the gravitational constant 6.67 $$\times$$ 10-11 N kg-2m2, m1 and m2 are the masses and r is the distance between them.
  • Gravitational field strength at a point is defined as the gravitational force acting per unit mass placed at that point,
    i.e. $$g=\dfrac{F_G}{m_2}=\dfrac{Gm_1}{r^2}$$ where m1 is the mass of the source of the field.
  • Gravitational potential energy at a point is defined as the work done by an external agent in bringing a body from infinity to that point (without any change in kinetic energy),
    i.e. $$U=-\dfrac{Gm_1m_2}{r}$$
  • Gravitational potential at a point is defined as the work done per unit mass by an external agent in bringing a body from infinity to that point (without any change in kinetic energy),
    i.e. $$V=-\dfrac{Gm_1}{r}$$

gravitation concepts

[/spoiler]

[spoiler title=”Interplanetary Travel”]

  • Escape speed is the minimum speed at which a body of mass m can be projected from the surface of a planet of mass M so that it reaches an infinite distance from the planet.
  • By conservation of energy,
    initial total energy = final total energy
    $$U_i+E_{k_i}=U_f+E_{k_f}\\-\dfrac{GMm}{r}+\dfrac{1}{2}mv^2=0+0$$
    $$v=\sqrt{2GM}$$

[/spoiler]

[spoiler title=”Satellite Motion”]

  • For an object with mass m in orbit,
    Gravitational Force = Centripetal Force
    $$F_G=F_C\\\dfrac{GMm}{r^2}=mr\omega^2\\\dfrac{GM}{r^2}=r(\dfrac{2\pi}{T})^2\\\text{period, }T=2\pi\sqrt{\dfrac{r^3}{GM}}$$
  • $$F_G=F_C\\\dfrac{GMm}{r^2}=\dfrac{mv^2}{r}\\\text{orbital speed, }v=\sqrt{\dfrac{GM}{r}}$$
  • kinetic energy, $$E_k=\dfrac{1}{2}mv^2=\dfrac{GMm}{2r}$$
  • total energy, $$E_T=E_k+U=\dfrac{GMm}{2r}-\dfrac{GMm}{r}=-\dfrac{GMm}{2r}$$

[/spoiler]

[spoiler title=”Geostationary Satellites”]

  • A geostationary satellite (one that is always above the same point on the Earth) has to be in an equatorial orbit, i.e. the orbit is in the same plane as that of the equator, so that
    • the centripetal force points towards the centre of the plane, and
    • it moves in the same direction of rotation as the Earth, i.e. from west to east.
  • It has a period of 24 h, i.e. same period as the Earth.
  • It orbits with a fixed radius of 4.20 $$\times$$ 10m from the Earth’s centre.

[/spoiler]

06. Motion in a Circle

[accordions autoHeight=’true’]

[accordion title=”1. Rotational Kinematics”]

  • Angular displacement $$\theta$$ is defined as the angle an object turns with respect to the centre of a circle. $$\theta=\dfrac{s}{r}$$ where s is the arc and r is the radius of the circle.
  • One radian is the angular displacement when the arc length is equal to the radius of the circle.
  • Angular velocity $$\omega$$ is defined as the rate of change of angular displacement. $$\omega=\dfrac{d\theta}{dt}$$
  • For motion in a circle of fixed radius, $$\omega=\dfrac{d\theta}{dt}=\dfrac{d(\dfrac{s}{r})}{dt}=\dfrac{1}{r}\dfrac{ds}{dt}=\dfrac{v}{r}$$. Thus $$v=r\omega$$.
  • Average angular velocity in one cycle. $$\omega=\dfrac{2\pi}{T}=2\pi f$$ where T is the period and f is the frequency.

[/accordion]

[accordion title=”2. Centripetal Force”]

  • Centripetal acceleration $$a=\dfrac{v^2}{r} = r\omega^2$$.
  • Centripetal force $$F =\dfrac{mv^2}{r} = mr\omega^2$$.

[/accordion]

[accordion title=”3. Uniform Circular Motion”]

For a body in uniform circular motion, there is a change in velocity as the direction of motion is changing. This requires an acceleration that is perpendicular to the velocity and directed towards the centre of circle. This acceleration is provided by a centripetal force. A resultant force acting on a body toward the centre of a circle provides the centripetal force.

[/accordion]

[accordion title=”4. Non-Uniform Circular Motion”]

Learn how to solve problems on circular motions of conical pendulum, cyclist, car, aircraft, swinging a pail etc.

[/accordion]

[/accordions]

05. Work, Energy and Power

[accordions autoHeight=’true’]

[accordion title=”1. Work Done”]

  • Work done W is defined as the product of the force and the displacement made in the direction of the force.
    • For a constant force F acting in same direction as the displacement s: W = F . s
    • If $$\theta$$ is the angle between F and s:  $$W = F\cos\theta\cdot s$$

work done

  • Work done = Area under F-s graph.

work done area under graph

 
[/accordion]

[accordion title=”1.1 Work Done on a Spring”]

  • Work done in stretching a spring = area under F-x graph = ½ Fx = ½ kx2


work done by spring

 
[/accordion]

[accordion title=”1.2 Work Done by a Gas”]

  • Work done by expanding gas = area under P-V graph = $$\int P.dV$$

work done by gas

[/accordion]

[accordion title=”2. Kinetic Energy”]

  • Kinetic energy is the energy of a body by virtue of its motion.
  • Derive kinetic energy: W = F.s = ma.s = m ½(v2 – u2)

[/accordion]
[accordion title=”3. Potential Energy”]

  • Potential energy is the energy of a body by virtue of it position.
  • Gravitational Potential Energy near Earth’s surface: $$E_p = mgh$$

gravitational potential energy

[/accordion]

[accordion title=”4. Conservation of Energy”]

  • The Principle of Conservation of Energy states that energy can neither be created nor destroyed in any process. It can be transformed from one form to another, and transferred from one body to another but the total amount remains constant.
  • The Work-Energy Theorem states that the net work done by external forces acting on a particle is equal to the change in mechanical energy of the particle. i.e. $$W=\Delta E_k+\Delta E_p$$
  • Force $$F =-\dfrac{dU}{dx} = -\text{(gradient of Potential Energy vs displacement graph)}$$

[/accordion]

[accordion title=”5. Power”]

  • Power is work done per unit time
  • Instantaneous Power: $$P = \dfrac{dW}{dt} = F \dfrac{ds}{dt} = F v$$,
  • Average Power: $$<P> = \dfrac{W}{t} = F <v>$$

[/accordion]

[accordion title=”6. Efficiency”]

  • Efficiency $$\eta= \dfrac{E_{output}}{E_{input}}\times 100 \% \text{ or} \dfrac{P_{output}}{P_{input}}\times100\%$$

[/accordion]
[/accordions]

Who Wants to be a Base Unit?

This is a game that I play with my classes in the beginning of the course after they have attended the first lecture on base units. It serves as an ice-breaker since this is usually when I first meet them, as well as a recap of what they have learnt.

The rules are stated in the slideshow.

1. Each student is assigned a base unit out of 3 possible ones, kg, m, s. Note that the other 4 base units, A, mol, K and cd are not given because they will be covered in later topics.
2. For a class of 25, the following distribution is recommended:
    a. kg – 5
    b. m – 10
    c. s – 10
3. Students will be asked to form groups when shown a Physical Quantity. Those with a negative power, e.g. the two “seconds” in kg m s–2, will have to sit/squat down.
4. Students who did not form a group will be ousted and the last few left in the game will win prizes.

Download Measurement Game