Seng Kwang Tan

Uniform vertical circular motion

The following GeoGebra app simulates the force vectors on an object in uniform vertical circular motion.

A real world example of this would be the forces acting on a cabin in a ferris wheel.

<iframe scrolling="no" title="Vertical Uniform Circular Motion " src="https://www.geogebra.org/material/iframe/id/t5jstqsm/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

Vertical Non-Uniform Circular Motion

This is a simulation that shows the vectors of forces acting on an object rolling in a vertical loop, assuming negligible friction.

To complete the loop, the initial velocity must be sufficiently high so that contact between the object and the track is maintained. When the contact force between the object and its looping track no longer exists, the object will drop from the loop.

The following code is for embedding in SLS.

<iframe scrolling="no" title="Vertical non-uniform circular motion" src="https://www.geogebra.org/material/iframe/id/ny3jhhsp/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

Does Hydrostatic Pressure Depend on Container Shape?

The following GeoGebra app simulates a pressure sensor that measures hydrostatic pressure, calibrated to eliminate the value of atmospheric pressure.

The purpose of this simulation is to address certain misconceptions by students such as the assumption that the shape of a container affects the pressure such that the pressure differs in different containers when measured at the same depth.

Drag the dot around to compare the pressure values at the same height between both containers.

The following codes can be used to embed this into SLS.

<iframe scrolling="no" title="Hydrostatic Pressure" src="https://www.geogebra.org/material/iframe/id/wbjduxt7/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

Hydrostatic Pressure and Upthrust

This app is used to demonstrate how a spherical object with a finite volume immersed in a fluid experiences an upthrust due to the differences in pressure around it.

Given that the centre of mass remains in the same position within the fluid, as the radius increases, the pressure due to the fluid above the object decreases while the pressure below increases. This is because hydrostatic pressure at a point is proportional to the height of the fluid above it.

It can also be used to show that when the volume becomes infinitesimal, the pressure acting in all directions is equal.

The following codes can be used to embed this into SLS.

<iframe scrolling="no" title="Hydrostatic Pressure and Upthrust" src="https://www.geogebra.org/material/iframe/id/xxeyzkqq/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

Noise-cancelling AirPod Pro

The recently launched Apple AirPod Pro presents a wonderful opportunity to relate an A-level concept to a real-world example – how noise-cancelling earphones work.

Apple’s website explained it in layman terms that seem to make sense. Let your students attempt to do a better job of explaining how destructive interference of waves is applied.

I probably won’t spend SGD379 on it though.