11 Wave Motion

Phase Difference GeoGebra Apps

I created a series of GeoGebra apps for the JC topics of Waves and Superposition, mainly on the concept of Phase Difference. The sizes of these GeoGebra apps are optimised for embedding into SLS. When I have time, I will create detailed instructions on how to create such apps. Meanwhile, feel free to use them.

Instructions on how to embed the apps into SLS can be found in the SLS user guide.

Phase difference between two particles on a progressive wave. Move the particles along the wave to see the value.

Phase difference between two particles on a stationary wave. Move the particles along the wave to observe how their velocities are different or similar.

Observe velocity vectors of multiple particles on a progressive wave.


In order to help students visualise a wavefront, a 3-D image is usually used to show the imaginary line joining particles in phase. I created the Geogebra apps below to allow students to change the wavefront and observe it move with time at a constant wave speed. There represent simplified versions of waves on a ripple tank with a linear and circular wavefront.

GeoGebra link: https://www.geogebra.org/m/rbjcszuc

Rotating the first waveform, you can get the displacement-distance profile of a wave, which is basically the cross-section of a 3-D wave.

GeoGebra link: https://www.geogebra.org/m/twtnrtuh

Geogebra Simulation for Particle on a Transverse Wave

I am once again exploring the use of Geogebra to create simulations for Physics. This is what I managed to put together. It serves to help students visualise how a particle in a transverse wave moves. The slider allows the user to pick any particle along the horizontal direction of the wave.

Measuring speed of sound in air using Audacity

A physics demonstration on how to measure the speed of sound in air using Audacity, an open source audio recording software. There are Windows and Mac versions of this free software, and even a portable version that can run off a flash drive without needing to be installed on a computer (for school systems with stricter measures regarding installing of software).

The sound is reflected along a long hollow tube that somehow, existed in our school’s laboratory. The two sound signals were picked up using a clip-on microphone attached to the open end of the tube and plugged into the laptop. I used my son’s castanet which gives a crisp sound and hence, a simple waveform that will not have the echo overlapping with the generated sound. The timing at which the sound signals were first detected were read and subtracted to obtain the time taken for the wave to travel up and down the 237 cm tube.

The value of the speed of sound calculated is 356 m/s, which is a bit on the high side due to the temperature of 35°C and relative humidity of between 60-95% when the reading was carried out.

If you are interested, you can check out how the software can be used to determine the frequency of a tuning fork.

We are about to get students to conduct experiments to explore how tension, length and thickness of a guitar string affects its pitch (frequency). I might post some results here when there’s time.