A siphon operates through the combined effects of gravity and air pressure, which work together to move liquid from a higher elevation to a lower one. Gravity is the primary force driving the flow, as it pulls the liquid from the higher container down through the siphon tube to the lower container. The liquid’s potential energy, due to its elevated position, is converted into kinetic energy as it flows downward.
Air pressure plays a crucial supporting role by maintaining the continuous flow of liquid. Atmospheric pressure on the liquid’s surface in the higher container pushes the liquid into the siphon tube. This pressure counteracts gravity’s pull that might otherwise cause the liquid to fall back into the higher container. As the liquid moves downwards, it creates a partial vacuum in the upper part of the tube, allowing atmospheric pressure to push more liquid into the tube, sustaining the flow.
Thus, a siphon can continue to operate as long as the outlet is lower than the liquid surface in the source container, the tube remains filled with liquid, and atmospheric pressure supports the flow.
This demonstration can be modified for use as a magic trick.
Materials:
Glass of water
Piece of cardboard that is larger than the mouth of the glass.
Procedure:
Fill the glass up with water.
Place the piece of cardboard over the mouth of the glass.
Holding the cardboard against the mouth of the glass, invert the glass.
Release the hand slowly.
Explanation
Water can remain in an inverted glass with the piece of cardboard underneath because atmospheric pressure is acting upward on the cardboard, holding it up together with the water. There is little air pressure within the g;ass, so the downward force acting on the cardboard is mainly the weight of the water, which is to the order of several newtons whereas atmospheric pressure exert an upward force of several thousand newtons.
Modification:
Drill a small hole in a plastic cup, near the base.
Seal the hole with your thumb and fill the cup with water.
Place the cardboard over the mouth of the cup.
Invert the cup together with the cardboard, while keeping your thumb over the hole.
Using a magic word as the cue, shift your thumb slightly to allow a little air into the cup. This will cause the cardboard and water to fall. As the air pressure within the cup is equal to that of the atmosphere.
We are usually unaware of the immense strength of the pressure due to the atmosphere around us, having taken it for granted. This demonstration will utilize atmospheric pressure to crush an aluminum can while introducing concepts such as the relationship between pressure and the amount of gas in a fixed volume.
Materials
Empty aluminum drink can
Pair of tongs
Stove or bunsen burner
Tank of water
Procedure
Heating the Can over a Flame
Put about a teaspoon of water into the drink can and heat it upright over the stove or Bunsen burner.
Prepare a tank of water and place it nearby.
When steam is seen to escape from the drink can, use the pair of tongs to grab the drink can, inverting it and placing it just slightly submerged into the tank so that the mouth of the can is sealed by the water.
You should observe the can being crushed instantaneously.
Physics Principles Explained
Two physics principles work in tandem to crush the can. The cooling of the air within the can will reduce the internal pressure of the can as the movement of the air particles will slow down with reduced temperature.
At the same time, the sudden cooling will cause the water vapour in the can that exists at just slightly above 100°C to revert to its liquid state, greatly reducing the amount of gases inside the can.
As air pressure depends on both the kinetic energies and amount of particles within the system, it is significantly reduced. Atmospheric pressure, being stronger than the internal pressure, will cause the can to implode.
Outline for Measuring the Speed of Sound Using a Tuning Fork and a Hollow Pipe Submerged in Water:
Equipment Setup:
Obtain a tuning fork of known frequency and a hollow pipe that can be partially submerged in a column of water.
The pipe should be open at the top and closed at the bottom by the water surface.
Strike the Tuning Fork:
Strike the tuning fork on a soft surface to make it vibrate. This produces a sound wave of a specific frequency, known as the fundamental frequency of the tuning fork.
Submerge the Hollow Pipe:
Submerge the hollow pipe vertically in a large container filled with water. The length of the air column inside the pipe can be adjusted by raising or lowering the pipe in the water.
Create Resonance:
Hold the vibrating tuning fork above the open end of the pipe. Slowly raise or lower the pipe in the water while listening for the loudest sound, which indicates resonance.
Resonance occurs when the length of the air column in the pipe is such that it forms a standing wave with the frequency of the tuning fork. This usually happens when the length of the air column is a quarter of the wavelength of the sound wave.
Measure the Air Column Length:
When resonance is achieved (indicated by a significant increase in sound amplitude), measure the length of the air column from the water surface to the top of the pipe. This length corresponds to one-quarter of the wavelength of the sound wave in air.
Calculate the Wavelength:
Multiply the measured length by 4 to determine the wavelength of the sound wave.
Determine the Speed of Sound:
Use the formula Speed of Sound = Frequency × Wavelength ($v = f\lambda$) to calculate the speed of sound in air. The frequency is given by the tuning fork, and the wavelength is obtained from the previous step.
Explanation:
The speed of sound in air can be measured using the relationship between the frequency of the sound wave and its wavelength, which are connected by the speed of sound. When the tuning fork vibrates, it creates sound waves that travel through the air. When these waves enter the hollow pipe, they reflect off the water surface, and at certain lengths, they create a resonance condition, amplifying the sound. The resonant length corresponds to one-quarter of the wavelength because the pipe is effectively closed at the bottom (by the water), forming a node at the water surface and an antinode at the open end. By measuring this length and knowing the frequency of the tuning fork, the speed of sound can be calculated.
This simple demonstration can be done anywhere at home using the following items:
an empty glass
a toothpick
two forks
The video below demonstrates how to do it. When the forks are balanced on the mouth of the glass with the toothpick, the centre of gravity of the forks-and-toothpick system will adjust itself so that it lies vertically below the pivoting point. This is possible because the forks form a V-shape within which the centre of gravity can exist.
Ever wondered how a submarine sinks and floats? The demonstration here can be used to explain the changes in forces involved and is going to impress most people who see it for the first time. It consists of a floating object inside a sealed plastic bottle that sinks when the bottle is given a tight squeeze and floats again when the squeeze is released.
I have seen the Cartesian diver being made with something else, such as a packet of ketchup or a dropper. The method given below works better than those and uses things that are easily available around the house.
Materials
A plastic water-bottle
A pen cap
Some modelling clay
Water
Procedure
The first step is to attach some modelling clay on the tail of the pen cap to serve as weight so that when placed into water, the pen cap floats upright. There has to be just enough weight added so that the pen cap will “just float”. That is, if any more is added, the cap will sink. It takes some time to find the balance and the best way to do so is to test it in a basin of water.
Once the correct weight is attached to the pen cap, place it upright into the filled water bottle and close the cap.
Test it out by giving the bottle a tight squeeze. (If it remains afloat even when you have given it the tightest squeeze, take the pen cap out and add more weight.
If it sinks straightaway, remove some weight. This should not be necessary if we have already carried ou the t test in the basin.)
Physics Principles Explained
There are two ways to explain this demonstration, one for those who cannot be bothered with equations, and the other for those who are keen on delving deeper.
Using the simple idea of density, we can explain that when the bottle is squeezed, some of the water enters the pen cap and compresses the air trapped within. Hence, the collective density of the submerged pen cap, together with its air and water content, increases. (Note that we are not referring to the density of the pen cap alone, which is a constant.) When this density exceeds that of the water around it, the pen cap sinks. The action is reversed when the squeeze is released.
Some would prefer an alternative explanation. This invokes the idea of forces acting on the pen cap, namely, upthrust and weight. Archimedes’ principle, otherwise known as the law of buoyancy, states that the any object that is partially or fully submerged in a fluid (liquid or gas) experiences an upward force known as the upthrust that is equal in magnitude to the weight of the fluid which is displaced. In mathematical terms,
$$U=\rho Vg$$
where $\rho$ is the density of the fluid, V is the volume of the fluid that is displaced and g is the acceleration of free-fall.
This force opposes the weight of the object and the result determines the direction that the object will move.
For the case of the Carteesian diver, upthrust is varied by changing the volume of fluid, V, that is displaced by the air within the pen cap. When the bottle is squeezed, part of the original volume of air is now occupied by the water which enters due to a higher pressure. This means that the volume of fluid displaced decreases, and as a result, upthrust decreases.