IP Topics

Internal Resistance and Terminal Potential Difference

https://www.geogebra.org/m/puvfjxk5

This applet demonstrates how terminal potential difference (as measured by the voltmeter across the terminals of the battery) changes depending on :

  1. internal resistance r
  2. external resistance R
  3. emf E
  4. when a switch is turned on and off
<iframe scrolling="no" title="Internal Resistance and Terminal Potential Difference" src="https://www.geogebra.org/material/iframe/id/puvfjxk5/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

Man in Elevator

I just took the elevator in my apartment building with the PhyPhox mobile app and recorded the acceleration in the z-direction as the lift went down and up. This was done in the middle of the night to reduce the chances of my neighbours getting into the elevator along the way and disrupting this experiment, and more importantly, thinking I was crazy. The YouTube video below is the result of this impromptu experiment and I intend to use it in class tomorrow.

I used to do this experiment with a weighing scale, and a datalogger, but with smartphone apps being able to demonstrate the same phenomenon, it was worth a try.

To complement the activity, I will be using this simulation as well. Best viewed in original format: https://ejss.s3.ap-southeast-1.amazonaws.com/elevator_Simulation.xhtml, this simulation done in 2016 was used to connect the changes in acceleration and velocity to the changes in normal contact force as an elevator makes its way up or down a building.

Sky-Diving and Terminal Velocity

https://www.geogebra.org/m/wavar9bx

This is a wonderful applet created by Abdul Latiff, another Physics teacher from Singapore, on how air resistance varies during a sky-dive with a parachute. It clearly demonstrates how two different values of terminal velocity can be achieved during the dive.

Incidentally, there is a video on Youtube that complements the applet very well. I have changed the default values of the terminal velocities to match those of the video below for consistency.

Also relevant is the following javascript simulation that I made in 2016 which can show the changes in displacement, velocity and acceleration throughout the drop.

Potential Divider with Thermistor Applet

The wonderful thing about GeoGebra is that you can whip up an applet from scratch within an hour just before your lesson and use it immediately to demonstrate a concept involving interdependent variables. I was motivated to do this after trying to explain a question to my IP4 students.

The RGB colours of the thermistor reflects the temperature (red being hot, bluish-purple being cold)

https://www.geogebra.org/m/etszj23m

This was done to demonstrate the application of potential dividers involving a thermistor and a variable resistor. It can, of course, be modified very quickly to introduce other circuit components.

Newton’s 2nd Law Applet

For a full-screen view, click here.

<iframe scrolling="no" title="Dynamics Problem" src="https://www.geogebra.org/material/iframe/id/uthszwjq/width/640/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/true/ctl/false" width="640px" height="480px" style="border:0px;"> </iframe>

This applet was designed with simple interactive features to adjust two opposing forces along the horizontal direction in order to demonstrate the effect on acceleration and velocity.

Equation of Motion App

Access the app in full screen here: https://www.geogebra.org/m/mfvvhjrj

This app is designed to give students practice in interpreting velocity-time graphs with various scenarios, such as more complex examples involving negative velocity and acceleration. Answers will be given if student is wrong.

Use this to embed into SLS or another LMS.

<iframe scrolling="no" title="Equations of Motion" src="https://www.geogebra.org/material/iframe/id/mfvvhjrj/width/700/height/480/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="480px" style="border:0px;"> </iframe>