Teaching Resources

Physics teaching resources

Calculating Energy Change in Nuclear Reactions

There are two methods of calculating the energy released in a nuclear reaction, which will be demonstrated using an example. Consider the nuclear reaction:

$$^2_1H + ^3_1H \rightarrow ^4_2He + ^1_0n$$

The table below shows the values of mass and binding energy per nucleon.

binding energy per nucleon / MeVmass / u
$^2_1H$ deuterium1.11228652.0141018
$^3_1H$ tritrium2.82727373.0160493
$^4_2He$ helium7.07391834.0026032
$^1_0n$ neutron 1.0086649

Method 1: Calculate difference in mass $\Delta m$ and take $E = \Delta m c^2$

$\Delta m$ = 2.0141018 + 3.0160493 – 4.0026032 – 1.0086649 = 0.0188830 u

$E = \Delta m c^2$
= 0.0188830 × 1.66054 × 10-27 kg × (2.99792 × 108 m s-1)2
= 2.8181 × 1012 J
= 17.589 MeV

Method 2: Calculate difference in binding energy

Changing in B.E. = B.E. of $^4_2He$ – (B.E. of $^2_1H$ + B.E. of $^3_1H$)
= 4(7.0739183) MeV – [2(1.1122865) + 3(2.8272737)] MeV
= 17.589 MeV

Harmonics of Open and Closed Pipes

The following GeoGebra interactives demonstrate the first few harmonics of an open pipe and a closed pipe given a fixed velocity of sound (340m/s). The frequencies and wavelengths are auto-calculated. Length of the pipe can be varied. Feel free to use, copy or edit them.

Open Pipe

Source: https://www.geogebra.org/m/tsufws72

For embedding into SLS or other websites:

<iframe scrolling="no" title="Harmonics of Open Pipes" src="https://www.geogebra.org/material/iframe/id/tmeypwgx/width/700/height/500/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="500px" style="border:0px;"> </iframe>

Closed Pipe

Source: https://www.geogebra.org/m/m3p7hny5

For embedding into SLS or other websites:

<iframe scrolling="no" title="Harmonics for Closed Pipe" src="https://www.geogebra.org/material/iframe/id/gm9k6hkg/width/700/height/500/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="500px" style="border:0px;"> </iframe>

Equilibrium of a Wall Shelf

This GeoGebra interactive allows students to vary the position of the centre of gravity of a shelf in order to observe the changes of the other two force vectors. The position of the supporting cable can be adjusted too.

The ability to resolve vectors allows students to apply principle of moments to understand how the vertical components of each force vary.

This is meant for the JC1 topic of Forces.

To embed into SLS, you can use the following code:

<iframe scrolling="no" title="Equilibrium of a Wall Shelf" src="https://www.geogebra.org/material/iframe/id/xdbr7qr5/width/700/height/500/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="700px" height="500px" style="border:0px;"> </iframe>