GeoGebra

Forces in Equilibrium

While preparing for a bridging class for those JAE JC1s who did not do pure physics in O-levels, I prepared an app on using a vector triangle to “solve problems for a static point mass under the action of 3 forces for 2-dimensional cases”.

For A-level students, they can be encouraged to use either the sine rule or the cosine rule to solve for magnitudes of forces instead of scale drawing, which is often unreliable.

For students who are not familiar with these rules, here is a simple summary:

Sine Rule

If you are trying to find the length of a side while knowing only two angles and one side, use sine rule:

$$\dfrac{A}{\sin{a}}=\dfrac{B}{\sin{b}}$$

Cosine Rule

If you are trying to find the length of a side while knowing only one angle and two sides, use cosine rule:

$$A^2 = B^2 + C^2 – 2BC\cos{a}$$

Using Loom and GeoGebra to explain a tutorial question

It’s Day 1 of the full home-based learning month in Singapore! As teachers all over Singapore scramble to understand the use of the myriad EdTech tools, I have finally come to settle on a few:

  1. Google Meet to do video conferencing
  2. Google Classroom for assignment that requires marking
  3. Student Learning Space for students’ self-directed learning, collaborative discussion and formative assessment.
  4. Loom for lecture recording
  5. GeoGebra for visualisation

The following is a video that was created using Loom to explain a question on why tension in a rope on which a weight is balanced increases when the rope straightens.

Two Body Problems in Dynamics

Problems involving two bodies moving together usually involve asking for the magnitude of the force between the two.

For example:

A 1.0 kg and a 2.0 kg box are touching each other. A 12 N horizontal force is applied to the 2.0 kg box in order to accelerate both boxes across the floor. Ignoring friction, determine:

(a) the acceleration of the boxes, and

(b) the force acting between the boxes.

To solve for (b) requires an understanding that the free-body diagram of the 1.0 kg box can be considered independently as only the force acting between the two boxes contributes to its acceleration since it is the only force acting on it in the horizontal direction.

This interactive app allows for students to visualise the forces acting on the boxes separately as well as a single system.

The codes for embedding into SLS:

<iframe scrolling="no" title="Two Mass Problem" src="https://www.geogebra.org/material/iframe/id/fh5pwc37/width/638/height/478/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="638px" height="478px" style="border:0px;"> </iframe>

Template for Creating GeoGebra Animations

In an introductory sharing for the use of GeoGebra to my colleagues, I have prepared a simple template for them to try their hands at animations of points and other elements.

You can try the same too. Create a moving point by typing into the Input field (5,5*sin(time)) so that you get a point at x = 5 that oscillates between 5 and -5 in the vertical direction.

Relationship between displacement-time and velocity-time graphs

Through this GeoGebra app, students can observe how the gradient of the displacement-time graph gives the instantaneous velocity and how the area under the velocity-time graph gives the change in displacement.

In the GeoGebra app below, you will see a displacement-time graph on the left and its corresponding velocity-time graph on the right. These graphs will be referring to the same motion occuring in a straight line. Instructions

  1. Click “Play” and observe the values of displacement and velocity change in each graph over time.
  2. Note the relationship between the gradient in the displacement-time graph and the value of velocity.
  3. Note the relationship between the area under the velocity-time graph and the value of displacement.