GeoGebra

Using Loom and GeoGebra to explain a tutorial question

It’s Day 1 of the full home-based learning month in Singapore! As teachers all over Singapore scramble to understand the use of the myriad EdTech tools, I have finally come to settle on a few:

  1. Google Meet to do video conferencing
  2. Google Classroom for assignment that requires marking
  3. Student Learning Space for students’ self-directed learning, collaborative discussion and formative assessment.
  4. Loom for lecture recording
  5. GeoGebra for visualisation

The following is a video that was created using Loom to explain a question on why tension in a rope on which a weight is balanced increases when the rope straightens.

Two Body Problems in Dynamics

Problems involving two bodies moving together usually involve asking for the magnitude of the force between the two.

For example:

A 1.0 kg and a 2.0 kg box are touching each other. A 12 N horizontal force is applied to the 2.0 kg box in order to accelerate both boxes across the floor. Ignoring friction, determine:

(a) the acceleration of the boxes, and

(b) the force acting between the boxes.

To solve for (b) requires an understanding that the free-body diagram of the 1.0 kg box can be considered independently as only the force acting between the two boxes contributes to its acceleration since it is the only force acting on it in the horizontal direction.

This interactive app allows for students to visualise the forces acting on the boxes separately as well as a single system.

The codes for embedding into SLS:

<iframe scrolling="no" title="Two Mass Problem" src="https://www.geogebra.org/material/iframe/id/fh5pwc37/width/638/height/478/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="638px" height="478px" style="border:0px;"> </iframe>

Template for Creating GeoGebra Animations

In an introductory sharing for the use of GeoGebra to my colleagues, I have prepared a simple template for them to try their hands at animations of points and other elements.

You can try the same too. Create a moving point by typing into the Input field (5,5*sin(time)) so that you get a point at x = 5 that oscillates between 5 and -5 in the vertical direction.

Relationship between displacement-time and velocity-time graphs

Through this GeoGebra app, students can observe how the gradient of the displacement-time graph gives the instantaneous velocity and how the area under the velocity-time graph gives the change in displacement.

In the GeoGebra app below, you will see a displacement-time graph on the left and its corresponding velocity-time graph on the right. These graphs will be referring to the same motion occuring in a straight line. Instructions

  1. Click “Play” and observe the values of displacement and velocity change in each graph over time.
  2. Note the relationship between the gradient in the displacement-time graph and the value of velocity.
  3. Note the relationship between the area under the velocity-time graph and the value of displacement.

Work Done Simulation

This GeoGebra app allows users to change the magnitude and direction of the force acting on an object, as well as the initial velocity.

The change in kinetic energy is calculated along with the work done in the direction of the force.

This demonstrates a very important concept in Physics known as the Work-Energy Theorem, where the net work done on a particle equals to its change in kinetic energy.