We are usually unaware of the immense strength of the pressure due to the atmosphere around us, having taken it for granted. This demonstration will utilize atmospheric pressure to crush an aluminum can while introducing concepts such as the relationship between pressure and the amount of gas in a fixed volume.
Materials
- Empty aluminum drink can
- Pair of tongs
- Stove or bunsen burner
- Tank of water
Procedure Heating the Can over a Flame
- Put about a teaspoon of water into the drink can and heat it upright over the stove or Bunsen burner.
- Prepare a tank of water and place it nearby.
- When steam is seen to escape from the drink can, use the pair of tongs to grab the drink can, inverting it and placing it just slightly submerged into the tank so that the mouth of the can is sealed by the water.
- You should observe the can being crushed instantaneously.
Physics Principles Explained
Two physics principles work in tandem to crush the can. The cooling of the air within the can will reduce the internal pressure of the can as the movement of the air particles will slow down with reduced temperature.
At the same time, the sudden cooling will cause the water vapour in the can that exists at just slightly above 100°C to revert to its liquid state, greatly reducing the amount of gases inside the can.
As air pressure depends on both the kinetic energies and amount of particles within the system, it is significantly reduced. Atmospheric pressure, being stronger than the internal pressure, will cause the can to implode.